The effect of protection and wave-exposure of two marine protected areas have opposite trends on macroalgae invasiveness.

Andreu BLANCO, Jesús S. TRONCOSO, Celia OLABARRIA, Marco F.L. LEMOS

Universida_{de}Vigo

ECIMAT Centro Singular de Investigación Mariña

INTRODUCTION Effects of the invasion

MAIN IMPACTS

Loss of genetic diversity
Alteration of ES functioning
Alteration of community structure
Impoverishment of ES services

INTRODUCTION The role of MPAs

Less vectors of introduction

Biotic resistance

Top-down interactions

Biotic acceptance
Benefit harvesting sp.

Dispersal mechanisms

MPA

OBJECTIVE

Understand the effect of MPAs on the invasion success of the 6 major invasive macroalgae species in the W Iberian Peninsula

REGIONAL STUDY: SPAIN AND PORTUGAL

TARGET SPECIES

Grateloupia turuturu

Sargassum muticum

Asparagopsis armata Falkenbergia rufolanosa

Undaria pinnatifida

Colpomenia peregrina

Codium fragile ssp. fragile

METHODOLOGY

Spain (Slightly steep to flat sea floor)

BERLENGAS MARINE RESERVE
Portugal (Highly steep to cliff sea floor)

ILLAS ATLANTICAS NATIONAL PARK

One transect of 30 m parallel to the coast-line at 5 m depth.

Photographs of quadrats (50 x 50 cm): Estimation of functional group diversity

GPS position was recorded at the beginning and at the end of the transect (datum type WGS84).

METHODOLOGY

BERLENGAS NATURAL RESERVE

Two vertical transects of 15 meters separated 30 m and perpendicular to the coast-line, from 0 to 15 meters depth.

Photographs of quadrats (50 x 50 cm): Estimation of functional group diversity

GPS position was recorded at the beginning and end of the transect (datum type WGS84).

METHODOLOGY

Two types of sampling (Qualitative and Quantitative)

Qualitative: Estimation of target species abundance

Proposed scale (based on DAFOR project)

D	Dominant	50-100%			
A	Abundant	30-50%			
F	Frequent	15-30%			
0	Occasional	5-15%			
R	Rare	< 5%			
N	Not seen				

Quantitative: Estimation of target species biomass

G. tututuru, C. peregrina S. muticum, and U. pinnatifida

Number of indiv. in 5 quadrats recorded. Up to 30 individuals collected.

Codium spp.

Number of indiv. in 5 quadrats recorded.

Collected | Biomass = up to 30 indiv. | ID = 100 indv.(<30%) or 50 (>30%)

A. armata and F. rufolanosa

Collected all biomass of a sub-quadrat of 25x25 cm in 5 quadrants.

STATISTICAL ANALYSES

Zero-inflated data & Poisson distribution

HURDLE MODELS

- Presence/absence
- Biomass differences once present

Protection: fixed (2 levels: reserve vs reference)

· Exposure: fixed (2 levels: semi-exposed vs exposed)

· Locality: random nested in protection (2/4 levels)

Factors

probability modeling

Biodiversity Pearson's correlation between FG and NIMS variables

QUALITATIVE RESULTS- Spain

	9000	A. armata	C. fragile	C. peregrina	U. pinnatifida	F. rufolanosa	G. turuturu	S. muticum
Cies1	Exposed	D	Α	N	N	Α	N	N
Cies1	Semiexposed	R	Α	R	N	N	R	N
Cies2	Exposed	0	R	N	N	Α	N	N
Cies2	Semiexposed	Α	D	N	N	N	R	N
Ons	Exposed	F	0	N	N	N	R	N
Ons	Semiexposed	R	F	R	R	N	R	N
Sálvora	Exposed	0	R	N	N	N	R	N
Sálvora	Semiexposed	N	F	R	0	N	N	F
Ref_Cies1	Exposed	D	0	N	N	N	N	N
Ref_Cies1	Semiexposed	F	F	R	0	0	N	N
Ref_Cies2	Exposed	0	F	N	N	D	N	N
Ref_Cies2	Semiexposed	Α	R	R	N	N	R	N
Ref_Ons	Exposed	0	Α	N	N	N	R	N
Ref_Ons	Semiexposed	R	F	N	N	N	N	N
Ref_Sálvora	Exposed	0	F	N	N	Α	0	N
Ref_Sálvora	Semiexposed	F	Α	0	R	N	N	R

QUANTITATIVE RESULTS- Spain

Number of invasive species

No effect of any of the factors studied

Total invasive species

Presence: No effect of exposure or protection

Once present, larger biomass in **OUTSIDE the MPA**

Codium fragile

Presence: No effect of exposure or protection

Once present, larger biomass **OUTSIDE the MPA**(especially in **EXPOSED** sites).

Asparagopsis armata

Higher probability of presence in **OUTSIDE the MPA**Once present, larger biomass in **OUTSIDE the MPA**

BIOTIC RESISTANCE RESULTS- Spain

8 functional groups:

- Encrusting (FG1) → + correlation with %NIMS
- Filamentous (FG2)
- Foliose (F3)
- Filiform (F4)
- Corticated calcareous (FG5)
- Corticated foliose (FG6)
- Corticated terete (FG7) → + correlation with C.fragile
- Leathery (FG8) correlation with A. armata

Diversity index (Simpson's) → no direct correlation with presence of NIMS

QUALITATIVE RESULTS- Portugal

			A. armata	C. fragile	C. peregrina	U. pinnatifida	F. rufolanosa	G. turuturu	S. muticum
	Farilhoes	Exposed	Α	N	R	N	N	N	N
	Farilhoes	Semiexposed	0	N	N	N	N	N	N
	Berlenga	Exposed	R	N	N	N	R	N	N
	Berlenga	Semiexposed	0	N	R	N	N	N	N
	Ref_Farilhoes	Exposed	N	N	N	N	0	N	N
	Ref_Farilhoes	Semiexposed	R	N	N	N	N	N	R
	Ref_Berlenga	Exposed	F	N	N	N	N	N	N
2	Ref_Berlenga	Semiexposed	Α	N	N	N	N	N	N

QUANTITATIVE RESULTS – Portugal

A. armata account for 91% of the total biomass of invasive species in this region.

Asparagopsis armata

Presence: Higher probability **INSIDE the MPA**Once present, larger biomass **INSIDE the MPA**

No effect of EXPOSURE.

BIOTIC RESISTANCE RESULTS- Portugal

8 functional groups:

- Encrusting (FG1)
- Filamentous (FG2)
- Foliose (F3)
- Filiform (F4)
- Corticated calcareous (FG5)
- Corticated foliose (FG6)
- Corticated terete (FG7) -> + correlation with A. armata biomass
- Leathery (FG8)

Diversity index (Simpson's) \rightarrow - correlation with % cover of native sp.

MAIN CONCLUSIONS

- A. armata is one of the most invasive species present in subtidal bottoms along the western coast of the Iberian Peninsula
- The protection level has no effect on the presence of invasive macroalgae species.
- The protection level significantly reduces the biomass of invasive macroalgae species in Spain.
- Island ecosystems are not more susceptible to invasion by macroalgae
- Biotic resistance is not proved in our case study (except correlation between certain FG and A. armata / C. fragile)
- MPAs of Spain and Portugal show opposite trends in controlling invasions

